# Critical Behavior of Self-Avoiding Walks on Fractals 

Fábio D. A. Aarão Reis ${ }^{1}$ and R. Riera ${ }^{1}$

Received December 3, 1991; final July 30, 1992


#### Abstract

Using a new graph counting technique suitable for self-similar fractals, exact 18th-order series expansions for SAWs on some Sierpinski carpets are generated. From them, the critical fugacity $x_{c}$ and critical exponents $v_{\text {SAW }}$ and $\gamma_{\text {SAW }}$ are obtained. The results show a linear dependence of the critical fugacity with the average number of bonds per site of the lattices studied. We find for some carpets with low lacunarity that $v_{\mathrm{SAW}}<0.75$, thus violating the relation $v_{\mathrm{SAW}}($ fractal $)>v_{\mathrm{SAW}}(d)$ for SAWs on the fractals which are embedded in a $d$-dimensional Euclidean space.


KEY WORDS: Self-avoiding walks; fractals; series expansion.

## 1. INTRODUCTION

The study of the critical behavior of self-avoiding walks (SAWs) on Euclidean lattices has three main theoretical approaches. On one hand, there are phenomenological theories or Flory-like approximations, where SAWs model the excluded-volume effect in polymer chains, ${ }^{(1,2)}$ and on the other hand, series expansions for the geometrical properties of the walk ${ }^{(3,4)}$ and field-theoretical approaches. ${ }^{(5,6)}$

During the last decade, much effort has been made in the study of the critical behavior of SAWs on fractals. Some exact results were presented for the case of finitely ramified fractals, ${ }^{(7)}$ such as Koch curves or Sierpinski gaskets. ${ }^{(8)}$

There also have been numerical studies of SAWs on percolation clusters, ${ }^{(9)}$ but the main theoretical effort on SAWs on general fractal lattices is based on the Flory approach.

[^0]The first attempt to generalize Flory theory to fractal lattices was made by Kremer ${ }^{(10)}$ for the exponent that scales the average end-to-end distance $R$ with $N$, the number of steps of the walks ( $R \sim N^{v s A W}$ ):

$$
\begin{equation*}
v_{k}=3 /\left(2+D_{f}\right) \tag{1}
\end{equation*}
$$

with $D_{f}$ the fractal dimension of the lattice. ${ }^{(7)}$
As $D_{f}$ does not completely characterize the fractal geometry, other proposals were made ${ }^{(8,11,12)}$ which relate $v_{\text {SAW }}$ to other geometrical parameters of the lattice as well as to the problem of a random walk on the same lattice. Although the authors give phenomenological justifications for their expressions, the final validity of the proposals demands comparisons with more reliable theoretical estimates.

For finitely ramified fractals the results from the above Flory generalizations improve the estimate (1), yet present an average deviation of $5 \%$ from the available exact results, while for infinitely ramified fractals, those estimates of $v_{\text {SAW }}$ are uncertain due to their dependence on geometrical parameters that are not precisely known. Numerical simulations are constrained to finite lattices. ${ }^{(13)}$

In this paper, we present results for the critical behavior of SAWs on a family of infinitely ramified fractals called Sierpinski carpets, based on the series expansion method. The series obtained are exact order by order in the expansion parameter for the infinite lattice. As in Euclidean lattices, this approach provides reliable estimates for critical parameters and exponents whose accuracy can be improved in a systematic way by increasing the order of the series.

From our results, we test the validity of estimates previously obtained in the literature from approximate methods.

In the next section we review a technique of graph counting on regular fractals ${ }^{(14)}$ that provides the series expansion method for SAWs on these general lattices. Subsequently in Section 3 we present results from series up to 18 th order for some Sierpinski carpets. Section 4 comprises a discussion and conclusion.

## 2. GRAPH COUNTING ON REGULAR FRACTALS

Here, we consider regular fractals formed by a deterministic rule of construction in which a primitive initiator is divided into subunits and reproduced iteratively within each subunit. Figure 1 illustrates the case of Sierpinski carpets where the initiator is a square divided into subsquares of length scale $b$ times smaller. Among the $b^{2}$ subsquares formed, $m$ are nonreproducible (lacunas) for the next iterations. After $l$ iterations, the lattice


Fig. 1. Sierpinski carpet at the $l$ th stage of construction. Here $b=6, m=4$. The dashed subsquares are lacunas. Each open subsquare is a reproduction of the full lattice after $l-1$ iterations of the rule of construction, which is given by the first iteration.
is said to be at the $l$ th stage. The fractal lattice is obtained in the limit $l \rightarrow \infty$. Figure 1 shows an $l$-stage Sierpinski carpet: it has as subunits copies of the lattice at the previous ( $l-1$ )th stage. These copies have the same spatial arrangement as the subunits of the initiator (first stage). The fractal thus constructed has fractal dimension $D_{f}=\ln \left(b^{2}-m\right) / \ln b$. ${ }^{(7)}$

SAWs are represented by graphs on the lattice formed by connected bonds without self-intersections and having two endpoints. Each different geometrical form defines a type of graph. Our aim is to count the number of embeddings of each type of SAW in the lattice at each stage. We consider the bonds at the borders as well as free boundary conditions.

In what follows we will describe the method for the Sierpinski carpets with lacunas symmetrically distributed with respect to the center of the initial square and not at the border. However, the method can be easily extended to other carpets or any other regular fractal.

The number $G(l)$ of embeddings of a certain type of SAW in the lattice at stage $l$ is given by ${ }^{(14)}$

$$
\begin{equation*}
G(l)=\left(b^{2}-m\right) G(l-1)+H(l-1) \tag{2a}
\end{equation*}
$$

with

$$
\begin{equation*}
H(l-1)=H_{1}(l-1)+H_{2}(l-1)=C_{1} b^{l-1}+C_{2} \tag{2b}
\end{equation*}
$$

In (2a), the first term represents the number of SAWs that can be embedded in each one of the $\left(b^{2}-m\right)$ copies of the $(l-1)$ th stage at lattice stage $l$ (see Fig. 1). The terms $H_{1}(l-1)$ and $H_{2}(l-1)$ represent the total
number of configurations that cross two or more such copies, respectively. In (2b), constants $C_{1}$ and $C_{2}$ depend only on properties of the graph at the minimal stage $l_{0}$ that embeds it. A detailed derivation of Eq. (2b) is shown in the Appendix.

Iterating (2) up to the stage $l_{0}$ gives

$$
\begin{equation*}
G(l)=A\left(b^{2}-m\right)^{l}+B b^{l}+C \tag{3}
\end{equation*}
$$

with constants $A, B$, and $C$ depending on the constants in (2).
Equation (3) is valid for all types of connected graphs ${ }^{(14)}$ and, in particular, for the number of sites $S$ (graphs with zero bonds):

$$
\begin{equation*}
S(l)=A_{1}\left(b^{2}-m\right)^{l}+B_{1} b^{l}+C_{1} \tag{4}
\end{equation*}
$$

From (3) and (4) we obtain the density of each type of SAW in the fractal lattice:

$$
\begin{equation*}
\rho_{\mathrm{SAW}}=\lim _{l \rightarrow \infty} \frac{G(l)}{S(l)}=\frac{A}{A_{1}} \tag{5}
\end{equation*}
$$

With this method it is also possible to obtain several geometrical parameters of the fractal lattice. For instance, from the number of graphs with one bond at each stage $G_{1}(l)$ and the number of sites $S(l)$ we are able to calculate the average coordination number of the fractal lattices, which is twice the average number of bonds per site:

$$
\begin{equation*}
q=\lim _{l \rightarrow \infty} \frac{G_{1}(l)}{S(l)} \tag{6}
\end{equation*}
$$

An important geometrical parameter for characterizing the critical behavior on fractals is lacunarity, ${ }^{(7)}$ which represents the degree of homogeneity of the fractals. ${ }^{(15)}$ The expressions proposed in the literature to measure lacunarity for carpets ${ }^{(15,16)}$ have so far been calculated only for the first states of the lattices. Our method allows the calculation of these expressions in the $l \rightarrow \infty$ stage.

## 3. RESULTS FOR SIERPINSKI CARPETS

Consider the series expansions for the two generating functions

$$
\begin{align*}
& C(x)=\sum_{n=0}^{\infty} C_{n} x^{n}  \tag{7a}\\
& R(x)=\sum_{n=1}^{\infty}\left\langle R_{n}^{2}\right\rangle x^{n-1} \tag{7b}
\end{align*}
$$

where $x$ is the step fugacity, $C_{n}$ is the number of $n$-step SAWs per site, and $\left\langle R_{n}^{2}\right\rangle$ is the mean-square end-to-end distance of $n$-step SAWs per site.

The generating functions (7) have, respectively, the critical behavior ${ }^{(2)}$

$$
\begin{align*}
& C(x) \sim\left(x_{c}-x\right)^{-\gamma_{A W}}  \tag{8a}\\
& R(x) \sim(1-x)^{-\left(2 v_{S A W}+1\right)} \tag{8b}
\end{align*}
$$

The coefficients $C_{n}$ in (7a) may be obtained from (5), and $\left\langle R_{n}^{2}\right\rangle$ in (7b) from (5) and the end-to-end distance for each type of SAW.

The procedure used to obtain $C_{n}$ (and $R_{n}^{2}$ ) for each particular fractal lattice is as follows:
(i) generation by computer of all types (different geometrical forms) of $n$-step SAWs on a square lattice. For each type,
(ii) consider the minimal stage $l_{0}$ of the fractal lattice that embeds it and compute exactly the total number of possible embeddings of the SAW at this stage [this gives $G\left(l_{0}\right)$; see text]
(iii) consider two neighboring $l_{0}$-stage reproductions and compute the total number of possible embeddings that cross the intersection between then [this gives the contribution to $H_{1}\left(l_{0}\right)$; see text]
(iv) consider more than two neighboring $l_{0}$-stage reproductions (for the Sierpinski carpets we have just to consider three or four reproductions) and compute the total number of possible embeddings that cross two or more intersections between them (this gives the contribution to $\mathrm{H}_{2}\left(l_{0}\right)$; see text ]
(v) from (iii) and (iv), according (A.3)-(A.5), obtain $H(l-1)$ in Eq. (2)
(vi) iterating (2) up to stage $l_{0}$ and using (ii), obtain constants $A, B, C$ in Eq. (3)
(vii) finally, $C_{n}$ is obtained from (5) by adding the contributions of all types of $n$-step SAWs.

To prevent errors, we have checked the results for SAWs up to 11 steps, rederiving constants $A, B$, and $C$ in Eq. (3) from the interaction of Eq. (2) up to the ( $l_{0}+1$ ) stage and computing directly (ii)-(v) for this stage.

Another check for small SAWs was done by computing directly the number of embeddings at three consecutives stages of construction of the fractal lattice. From these results and assuming Eq. (3), the constants $A, B$, and $C$ were also confirmed.

We have performed the exact calculations of the coefficients $C_{n}$ and $\left\langle R_{n}^{2}\right\rangle$ for some Sierpinski carpets. Figure 2 shows the first stage of these lattices. They have respectively parameters $b=5, m=1$ (lattice 1 ); $b=7$,


Fig. 2. Initiators of Sierpinski carpets: (a) $b=5, m=1$; (b, c) $b=7, m=9$; (d) $b=3, m=1$; (e) $b=5, m=9$.
$m=9$ (lattices 2 and 3 ); $b=3, m=1$ (lattice 4); and $b=5, m=9$ (lattice 5). Lattices 2 and 3 have the same fractal dimension, but lattice 2 has a lower lacunarity, or a more uniform spatial distribution of lacunas. ${ }^{(15)}$

Tables I-V show the coefficients $C_{n}$ and $\rho_{n}=C_{n}\left\langle R_{n}^{2}\right\rangle$ for lattices 1-5, respectively.

The resulting 18 th-order series (7) were analyzed by usual $D \log$ Padé approximants ${ }^{(17)}$ in order to fit (8).

In Tables VI-X we show the poles and residues of Padé approximants to the logarithmic derivative of the SAW series (7a) ${ }^{(17)}$ that provides estimates for the critical fugacity $x_{c}$ and exponent $\gamma_{\text {SAW }}$ in (8a), for lattices $1-5$, respectively. Analogously, in Tables XI-XV, we show the value of $D \log$ Padé approximants of the SAW series ( 7 b ) that provides estimates for $\left(2 \gamma_{\mathrm{SAW}}+1\right)$ in ( 8 b ) at the biased critical value $x^{*}=1$.

Final estimates of $x_{c}, \gamma_{\mathrm{SAW}}$ and $v_{\mathrm{SAW}}$ are obtained by considering the last $M=9$ estimates of the [ $N_{i} / D_{i}$ ] approximants shown in Tables VI-XV and using the standard procedure for the error assessment. ${ }^{(18)}$

Table XVI shows the results for critical parameters $x_{c}$, critical exponents $v_{\text {SAW }}$ and $\gamma_{\text {SAW }}$, together with $D_{f}$ and the average number of bonds per site $q(6)$ for each lattice. For comparison, we include the results for the square lattice from an 18th-order series expansion of (7) and the same criteria for the estimates.

Table I. Coefficients $C(x)$ and $R(x)$ for SAWs on the Sierpinski Carpet with $b=5, m=1$ (see Fig. 2a)

| $n$ | $C_{n}$ | $\rho_{n}$ |
| :---: | ---: | ---: |
| 1 | $115 / 29$ | $115 / 29$ |
| 2 | $342 / 29$ | $912 / 29$ |
| 3 | $48893 / 1392$ | $222461 / 1392$ |
| 4 | $22461 / 232$ | $473666 / 696$ |
| 5 | $63337 / 232$ | $1813039 / 696$ |
| 6 | $1035941 / 1392$ | $6496555 / 696$ |
| 7 | $68748293 / 33408$ | $1066015037 / 33408$ |
| 8 | $10326863 / 1856$ | $88042953 / 8352$ |
| 9 | $253783977 / 16704$ | $5664272501 / 16704$ |
| 10 | $113829953 / 2784$ | $2973959761 / 2784$ |
| 11 | $616617891 / 5568$ | $555253416097 / 16704$ |
| 12 | $9921283537 / 33408$ | $21086901275 / 2088$ |
| 13 | $13362209531 / 16704$ | $50888633383 / 16704$ |
| 14 | $71463382173 / 33408$ | $506516040677 / 5568$ |
| 15 | $191739773753 / 33408$ | $8994485533345 / 33408$ |
| 16 | $511561441985 / 33408$ | $3301964087761 / 4176$ |
| 17 | $1368443702359 / 33408$ | $8561214321183 / 3712$ |
| 18 | $1214746654897 / 11136$ | $111697968493535 / 16704$ |

Table II. Coefficients $C(x)$ and $R(x)$ for SAWs on the Sierpinski Carpet with $b=7, m=9$ (see Fig. 2b)

| $n$ | $C_{n}$ | $\rho_{n}$ |
| :---: | ---: | ---: |
| 1 | $182 / 47$ | $182 / 47$ |
| 2 | $528 / 47$ | $1408 / 47$ |
| 3 | $30807 / 940$ | $139607 / 940$ |
| 4 | $41501 / 470$ | $58046 / 94$ |
| 5 | $22913 / 94$ | $1084481 / 470$ |
| 6 | $610407 / 940$ | $3792521 / 470$ |
| 7 | $165117 / 94$ | $12647509 / 470$ |
| 8 | $436017 / 94$ | $40739336 / 470$ |
| 9 | $465341363 / 37600$ | $10215742339 / 37600$ |
| 10 | $305460951 / 9400$ | $1958733547 / 2350$ |
| 11 | $3229577743 / 37600$ | $18891719643 / 7520$ |
| 12 | $2110315247 / 9400$ | $35078924529 / 4700$ |
| 13 | $5542013239 / 9400$ | $205936218759 / 9400$ |
| 14 | $14435239231 / 9400$ | $119685077599 / 1880$ |
| 15 | $150961289197 / 37600$ | $1723931566617 / 9400$ |
| 16 | $78439110813 / 7520$ | $4929142078277 / 9400$ |
| 17 | $1022039468727 / 37600$ | $56000535076967 / 37600$ |
| 18 | $2649923058101 / 37600$ | $79060765759227 / 18800$ |

Table III. Coefficients $C(x)$ and $R(x)$ for SAWs on the Sierpinski Carpet with $b=7, m=9$ (see Fig. 2c)

| $n$ | $C_{n}$ | $\rho_{n}$ |
| :---: | ---: | ---: |
| 1 | $117 / 31$ | $117 / 31$ |
| 2 | $330 / 31$ | $880 / 31$ |
| 3 | $1871 / 62$ | $8463 / 62$ |
| 4 | $97519 / 1240$ | $681024 / 1240$ |
| 5 | $520643 / 2480$ | $4918187 / 2480$ |
| 6 | $668567 / 1240$ | $8305914 / 1240$ |
| 7 | $3487859 / 2480$ | $53491859 / 2480$ |
| 8 | $8865873 / 2480$ | $83250162 / 1240$ |
| 9 | $11394207 / 1240$ | $252358531 / 1240$ |
| 10 | $57604051 / 2480$ | $749189531 / 1240$ |
| 11 | $146674303 / 2480$ | $4371527287 / 2480$ |
| 12 | $184636936 / 1240$ | $3143951199 / 620$ |
| 13 | $467332593 / 1240$ | $17878761053 / 1240$ |
| 14 | $2346766139 / 2480$ | $10064654037 / 248$ |
| 15 | $2958269782 / 1240$ | $140437005034 / 1240$ |
| 16 | $296559205293 / 49600$ | $972229508503 / 3100$ |
| 17 | $372798788797 / 24800$ | $4278413058889 / 4960$ |
| 18 | $18660653341777 / 49600$ | $14617377705617 / 6200$ |

Table IV. Coefficients $C(x)$ and $R(x)$ for SAWs on the Sierpinski Carpet with $b=3, m=1$ (see Fig. 2d)

| $n$ | $C_{n}$ | $\rho_{n}$ |
| :---: | ---: | ---: |
| 1 | $42 / 11$ | $42 / 11$ |
| 2 | $120 / 11$ | $320 / 11$ |
| 3 | $1379 / 44$ | $6243 / 44$ |
| 4 | $1825 / 22$ | $6375 / 11$ |
| 5 | $79169 / 352$ | $748137 / 352$ |
| 6 | $51695 / 88$ | $320855 / 44$ |
| 7 | $548621 / 352$ | $8401085 / 352$ |
| 8 | $1419981 / 352$ | $6644089 / 88$ |
| 9 | $1857937 / 176$ | $40923089 / 176$ |
| 10 | $9567527 / 352$ | $123423015 / 176$ |
| 11 | $198498261 / 2816$ | $5853951733 / 2816$ |
| 12 | $31817111 / 176$ | $1069407931 / 176$ |
| 13 | $328062195 / 704$ | $12354078169 / 704$ |
| 14 | $1677615671 / 1408$ | $35316758085 / 704$ |
| 15 | $4305919093 / 1408$ | $200127960733 / 1408$ |
| 16 | $10983364177 / 1408$ | $281328468717 / 704$ |
| 17 | $3512719205 / 176$ | $49098876469 / 44$ |
| 18 | $71549402013 / 1408$ | $1090218120733 / 352$ |

Table V. Coefficients $C(x)$ and $R(x)$ for SAWs on the Sierpinski Carpet with $b=5, m=9$ (see Fig. 2e)

| $n$ | $C_{n}$ | $\rho_{n}$ |
| :---: | ---: | ---: |
| 1 | $210 / 61$ | $210 / 61$ |
| 2 | $528 / 61$ | $1408 / 61$ |
| 3 | $5341 / 244$ | $23877 / 244$ |
| 4 | $12187 / 244$ | $42537 / 122$ |
| 5 | $57311 / 488$ | $543671 / 488$ |
| 6 | $64249 / 244$ | $406639 / 122$ |
| 7 | $589579 / 976$ | $9274523 / 976$ |
| 8 | $5341807 / 3904$ | $51032471 / 1952$ |
| 9 | $118677773 / 3904$ | $274374053 / 3904$ |
| 10 | $26372337 / 3904$ | $180144509 / 976$ |
| 11 | $59257245 / 3904$ | $1860446153 / 3904$ |
| 12 | $131654839 / 3904$ | $2361402615 / 1952$ |
| 13 | $294339305 / 3904$ | $11832763917 / 3904$ |
| 14 | $653479731 / 3904$ | $7330081535 / 976$ |
| 15 | $1455378635 / 3904$ | $71903470743 / 3904$ |
| 16 | $201662325 / 244$ | $87536531663 / 1952$ |
| 17 | $14326545627 / 7808$ | $845589313155 / 7808$ |
| 18 | $15844414027 / 3904$ | $507819935985 / 1952$ |

Table VI. $D \log$ Padé Approximants to the Generating Function $C(x)$ of Lattice 1 (see Fig. 2a)

|  | $[N-1 / N]$ <br> Pole (residue) | $[N / N]$ <br> Pole (residue) | $[N+1 / N]$ <br> Pole (residue) |
| :---: | :---: | :---: | :---: |
| 1 | $0.504462(-2.00045)$ | $0.286531(-0.64538)$ | $0.590297(-5.64301)$ |
| 2 | $0.391173(-1.39713)$ | $0.390144(-1.38656)$ | $0.374306(-1.17795)$ |
| 3 | $0.391249(-1.39762)^{a}$ | $0.376032(-1.20466)$ | $0.372172(-1.15872)^{a}$ |
| 4 | $0.378672(-1.25116)$ | $0.384316(-1.39678)$ | $0.376975(-1.21071)$ |
| 5 | $0.379938(-1.27478)$ | $0.380444(-1.28710)$ | $0.381133(-1.30742)$ |
| 6 | $0.375648(-1.33206)^{a}$ | $0.381453(-1.31914)$ | $0.383166(-1.45043)^{a}$ |
| 7 | $0.381737(-1.33179)$ | $0.381845(-1.33749)$ | $0.381903(-1.34097)$ |
| 8 | $0.381985(-1.34676)^{a}$ | $0.381771(-1.33386)^{a}$ | $0.382164(-1.36035)$ |

${ }^{a}$ Pole present between the origin and 1.15 times the displayed physical singularity.

Table VII. D log Padé Approximants to the Generating Function $C(x)$ of Lattice 2 (see Fig. 2b)

|  | $[N-1 / N]$ <br> Pole (residue) | $[N / N]$ <br> Pole (residue) | $[N+1 / N]$ <br> Pole (residue) |
| :---: | :---: | :---: | :---: |
| 1 | $0.518173(-2.00654)$ | $0.288759(-0.62312)$ | $0.614410(-6.00257)$ |
| 2 | $0.398766(-1.38756)$ | $0.398889(-1.38879)$ | $0.383311(-1.18738)$ |
| 3 | $0.398767(-1.38757)$ | $0.385206(-1.21617)$ | $0.381044(-1.16696)^{a}$ |
| 4 | $0.388028(-1.26442)$ | $0.401714(-1.71960)$ | $0.385832(-1.21469)$ |
| 5 | $0.390119(-1.30262)$ | $0.391563(-1.33881)$ | $0.393676(-1.40894)$ |
| 6 | $b$ | $0.394599(-1.44944)$ | $0.394236(-1.43194)$ |
| 7 | $0.394018(-1.42115)$ | $0.395145(-1.47468)^{a}$ | $0.393289(-1.39050)$ |
| 8 | $0.392080(-1.33469)$ | $0.392933(-1.37415)$ | $0.392594(-1.35627)$ |
| 9 | $0.392788(-1.36709)$ |  |  |

${ }^{a}$ Pole present between the origin and 1.15 times the displayed physical singularity.
${ }^{b}$ No poles found.

Table VIII. $D \log$ Padé Approximants to the Generating Function $\boldsymbol{C}(\mathrm{x})$ of Lattice 3 (see Fig. 2c)

|  | $[N-1 / N]$ <br> Pole (residue) | $[N / N]$ <br> Pole (residue) | $[N+1 / N]$ <br> Pole (residue) |
| :--- | :---: | :---: | :---: |
| 1 | $0.535667(-2.02171)$ | $0.296500(-0.61941)$ | $0.660244(-6.83940)$ |
| 2 | $0.413119(-1.40583)$ | $0.416343(-1.43752)$ | $0.400173(-1.23052)$ |
| 3 | $0.413679(-1.40971)$ | $0.402487(-1.26552)$ | $0.393781(-1.20102)^{a}$ |
| 4 | $0.405003(-1.30759)$ | $0.419131(-1.80562)$ | $0.398954(-1.21193)^{a}$ |
| 5 | $0.406465(-1.33310)$ | $0.407015(-1.34569)$ | $0.407537(-1.36002)$ |
| 6 | $0.412019(-1.70007)^{a}$ | $0.407386(-1.35545)$ | $0.407707(-1.36440)^{a}$ |
| 7 | $0.407081(-1.34618)^{a}$ | $0.410745(-1.41028)^{a}$ | $0.405730(-1.30702)$ |
| 8 | $0.403917(-1.22779)$ | $0.407317(-1.35853)$ | $0.406235(-1.32419)$ |
| 9 | $0.405609(-1.29961)$ |  |  |

[^1]Table IX. $D \log$ Padé Approximants to the Generating Function $C(x)$ of Lattice 4 (see Fig. 2d)

|  | $[N-1 / N]$ <br> Pole (residue) | $[N / N]$ <br> Pole (residue) | $[N+1 / N]$ <br> Pole (residue) |
| :--- | :---: | :---: | :---: |
| 1 | $0.527397(-2.01370)$ | $0.292779(-0.62058)$ | $0.637951(-6.42010)$ |
| 2 | $0.406267(-1.39630)$ | $0.408105(-1.41454)$ | $0.392510(-1.21376)$ |
| 3 | $0.406470(-1.39769)$ | $0.394365(-1.24186)$ | $0.388608(-1.18876)^{a}$ |
| 4 | $0.396640(-1.28095)$ | $b$ | $0.391488(-1.19940)^{a}$ |
| 5 | $0.398105(-1.30734)$ | $0.398751(-1.32269)$ | $0.399576(-1.34676)$ |
| 6 | $0.392625(-1.40197)^{a}$ | $0.399893(-1.35814)$ | $0.399912(-1.35894)$ |
| 7 | $0.399911(-1.35889)$ | $0.399894(-1.35821)$ | $0.399727(-1.35117)$ |
| 8 | $0.399466(-1.33782)$ | $0.399308(-1.32835)$ | $0.399825(-1.35503)^{a}$ |
| 9 | $0.399478(-1.33846)^{a}$ |  |  |

${ }^{a}$ Pole present between the origin and 1.15 times the displayed physical singularity.
${ }^{b}$ No poles found.
Table X. D log Padé Approximants to the Generating Function $C(x)$ of Lattice 5 (see Fig. 2e)

|  | $[N-1 / N]$ <br> Pole (residue) | $[N / N]$ <br> Pole (residue) | $[N+1 / N]$ <br> Pole (residue) |
| :---: | :---: | :---: | :---: |
| 1 | $0.630538(-2.17070)$ | $0.319784(-0.55833)$ | $0.928221(-13.65449)$ |
| 2 | $0.475372(-1.47483)$ | $0.487754(-1.58583)$ | $0.459160(-1.25302)$ |
| 3 | $0.479259(-1.50061)$ | $0.459042(-1.25143)$ | $0.459152(-1.25293)$ |
| 4 | $0.460628(-1.27684)$ | $b$ | $0.459343(-1.25512)^{a}$ |
| 5 | $0.460832(-1.28014)$ | $0.459686(-1.26025)$ | $0.459429(-1.25619)$ |
| 6 | $0.450556(-1.03942)$ | $0.451659(-1.07286)$ | $0.454908(-1.16728)$ |
| 7 | $0.450273(-1.03146)^{a}$ | $0.455877(-1.19422)$ | $0.449109(-1.09320)^{a}$ |
| 8 | $0.457312(-1.23746)$ | $0.461909(-1.43436)$ | $b$ |
| 9 | $0.456576(-1.21657)^{a}$ |  |  |

${ }^{a}$ Pole present between the origin and 1.15 times the displayed physical singularity.
${ }^{b}$ No poles found.

Table XI. D log Padé Approximants to the Generating Function $R(x)$ of Lattice 1 (see Fig. 2a)

| $N$ | $[N-1 / N]$ <br> Residue | $[N / N]$ <br> Residue | $[N+1 / N]$ <br> Residue |
| :---: | :---: | :---: | :---: |
| 1 | 2.12619 | 2.47036 | 2.57971 |
| 2 | 2.59061 | 2.51782 | 2.42387 |
| 3 | 2.44127 | 2.42389 | 2.42387 |
| 4 | 2.43830 | 2.45767 | 2.45918 |
| 5 | 2.45923 | 2.45735 | 2.47263 |
| 6 | 2.47718 | 2.47577 | $2.68625^{a}$ |
| 7 | 2.47674 | 2.47765 | 2.47813 |
| 8 | 2.47865 | 2.47748 |  |

${ }^{a}$ Pole present near the biased critical value $x^{*}=1$.

Table XII. $D \log$ Padé Approximants to the Generating Function $R(x)$ of Lattice 2 (see Fig. 2b)

| $N$ | $[N-1 / N]$ <br> Residue | $[N / N]$ <br> Residue | $[N+1 / N]$ <br> Residue |
| :--- | :--- | :--- | :--- |
| 1 | 2.10319 | 2.45848 | 2.56858 |
| 2 | 2.57979 | 2.50550 | 2.39929 |
| 3 | 2.42080 | 2.38372 | 2.39750 |
| 4 | 2.41204 | 2.42560 | 2.42138 |
| 5 | 2.42196 | 2.42363 | 2.41625 |
| 6 | 2.42020 | 2.41834 | 2.41675 |
| 7 | 2.42091 | 2.42587 | 2.38206 |
| 8 | 2.41717 | 2.45791 |  |

Table XIII. $D \log$ Padé Approximants to the Generating Function $R(x)$ of Lattice 3 (see Fig. 2c)

| $N$ | $[N-1 / N]$ <br> Residue | $[N / N]$ <br> Residue | $[N+1 / N]$ <br> Residue |
| :--- | :--- | :--- | :--- |
| 1 | 2.09277 | 2.45474 | 2.57123 |
| 2 | 2.58381 | 2.50813 | 2.44024 |
| 3 | 2.45054 | 2.45518 | 2.43611 |
| 4 | 2.45021 | 2.49095 | 2.51890 |
| 5 | 2.52489 | 2.41479 | 2.60269 |
| 6 | 2.62315 | 2.68500 | $2.71130^{a}$ |
| 7 | $2.7141^{a}$ | 2.68720 | 2.59847 |
| 8 | 2.62474 | $2.05370^{a}$ |  |

${ }^{a}$ Pole present near the biased critical value $x^{*}=1$.

Table XIV. $D \log$ Padé Approximants to the Generating Function $R(x)$ of Lattice 4 (see Fig. 2d)

| $N$ | $[N-1 / N]$ <br> Residue | $[N / N]$ <br> Residue | $[N+1 / N]$ <br> Residue |
| :---: | :---: | :---: | :---: |
| 1 | 2.09764 | 2.45604 | 2.56705 |
| 2 | 2.57847 | 2.50448 | 2.42153 |
| 3 | 2.43562 | 2.43062 | 2.42021 |
| 4 | 2.43529 | 2.46281 | 2.47382 |
| 5 | 2.47564 | 2.45286 | 2.55281 |
| 6 | $2.61425^{a}$ | $2.62386^{a}$ | 2.58440 |
| 7 | $2.61519^{a}$ | $2.68300^{a}$ | 2.54631 |
| 8 | $2.59912^{a}$ | 2.51948 |  |

[^2]Table XV. $D \log$ Padé Approximants to the Generating Function $R(x)$ of Lattice 5 (see Fig. 2e)

| $N$ | $[N-1 / N]$ <br> Residue | $[N / N]$ <br> Residue | $[N+1 / N]$ <br> Residue |
| :--- | :--- | :--- | :--- |
| 1 | 2.02976 | 2.44424 | 2.67166 |
| 2 | 2.72107 | 2.60400 | 2.59416 |
| 3 | 2.59473 | 2.60825 | 2.58140 |
| 4 | 2.58339 | 2.59370 | 2.59286 |
| 5 | 2.59288 | 2.59376 | 2.60169 |
| 6 | 2.60266 | 2.58640 | $0.26210^{a}$ |
| 7 | 2.35605 | $1.22496^{a}$ | $0.19732^{a}$ |
| 8 | 2.27807 | 2.40228 |  |

${ }^{a}$ Pole present near the biased critical value $x^{*}=1$.

Table XVI. Critical Parameters and Exponents for SAWs on Sierpinski Carpets Obtained from the 18th-Order Series Expansion, together with Results for the Square Lattice

| Lattice | $D_{f}$ | $\langle q\rangle$ | $x_{c}$ | $\gamma$ | $v$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.975 | 1.983 | $0.3818 \pm 0.0003$ | $1.338 \pm 0.030$ | $0.739 \pm 0.007$ |
| 2 | 1.896 | 1.936 | $0.3933 \pm 0.0010$ | $1.36 \pm 0.07$ | $0.71 \pm 0.10$ |
| 3 | 1.896 | 1.887 | $0.4058 \pm 0.0018$ | $1.30 \pm 0.19$ | $0.82 \pm 0.09$ |
| 4 | 1.893 | 1.909 | $0.3997 \pm 0.0005$ | $1.35 \pm 0.05$ | $0.80 \pm 0.06$ |
| 5 | 1.723 | 1.721 | $0.458 \pm 0.005$ | $1.26 \pm 0.37$ | $0.7 \pm 0.5$ |
| Square $^{a}$ | 2 | 2 | $0.3789 \pm 0.0003$ | $1.331 \pm 0.013$ | $0.744 \pm 0.008$ |

${ }^{a}$ Exact values: $\gamma^{(2)}=1.34375, v^{(2)}=0.75$ (ref. 5). Best estimate: $x_{c}^{(2)}=0.379052(0)$ (ref. 4).

## 4. DISCUSSION AND CONCLUSIONS

From Table XVI, it is not possible to order exponents $\gamma$ and $v$ against $D_{f}$, but the critical fugacity $x_{c}$ depends monotonically on $q$, as expected (see Fig. 3). In fact, from Fig. 3, the dependence of $x_{c}$ on $q$ is approximately linear for this range of $D_{f}$.

Table XVI also shows that lattices 1 and 2 have central values estimate $v_{\text {SAW }}<v^{(2)}$ (exact result for the square lattice). For lattice 2, it is also the trend shown by the last approximants in Table XII. These results do not support previous findings in the literature such as $v_{k}$ [Eq. (1)] or the ones obtained from a bond-moving scheme $v_{T} .{ }^{(19)}$ Both approaches estimate $v_{\mathrm{SAW}}>\nu^{(2)}$ for all families of carpets (see Table XVII).


Fig. 3. Critical fugacity versus average number of bonds per site of Sierpinski carpets obtained from the 18th-order series expansion. The result for the square lattice is also included.

Now consider the $v_{\text {SAW }}$ estimates from Table XVI for lattices 3 and 4. While the final results include $v^{(2)}$, Tables XIII and XIV of the last approximants suggest that for these lattices the $\left(2 v_{\mathrm{SAW}}+1\right)$ estimates converge to values greater than $\left(2 v^{(2)}+1\right)$.

Table X for the $v_{\text {SAW }}$ estimates of lattice 5 have anomalous highest
Table XVII. End-to-End Distance Exponent $\mathbf{v}_{\text {sAw }}$ for SAWs on Sierpinski Carpets

| Lattice | $v_{\mathrm{SAW}}{ }^{a}$ | $v_{k}{ }^{b}$ | $v_{T}{ }^{c}$ |
| :---: | :---: | :---: | :---: |
| 1 | $0.739 \pm 0.007$ | 0.755 | 0.796 |
| 2 | $0.71 \pm 0.10$ | 0.770 | 0.812 |
| 3 | $0.82 \pm 0.09$ | 0.770 | 0.814 |
| 4 | $0.80 \pm 0.06$ | 0.771 | 0.829 |
| 5 | $0.7 \pm 0.5$ | 0.806 | 0.869 |

[^3]Table XVIII. Exponent $\mathrm{Y}_{\text {SAW }}$ for SAWs on Sierpinski Carpets

| Lattice | $\gamma_{\mathrm{SAW}}{ }^{a}$ | $\gamma_{k}{ }^{b}$ |
| :---: | :---: | :---: |
| 1 | $1.338 \pm 0.030$ | 1.510 |
| 2 | $1.36 \pm 0.07$ | 1.540 |
| 3 | $1.30 \pm 0.19$ | 1.540 |
| 4 | $1.35 \pm 0.05$ | 1.542 |
| 5 | $1.26 \pm 0.37$ | 1.612 |

${ }^{a}$ This work.
${ }^{6}$ Ref. 17.
order approximants indicating a possible change in the end-to-end distance behavior. As consequence, the final results for the exponents of this lattice have poor accuracy and it is not possible to draw any conclusion from them.

The results for the end-to-end distance exponent of lattices 3 and 4 can be understood if we consider their initiators (Figs. 2c and 2d, respectively). As we iterate them, the fractal lattices thus obtained leave narrow corridors to embed the SAWs. They show a tendency to stretch in order to survive, leading to $v_{\text {SAW }}>v^{(2)}$ (or $D_{\text {SAW }}=1 / v_{\mathrm{SAW}}<1 / v^{(2)}$ ) for carpets with high lacunarity.

The new behavior $v_{\text {SAW }}<v^{(2)}$ for lattices 1 and 2 can also be understood if we consider their initiators (Figs. $2 a$ and $2 b$ ), which have lacunas spread over the square lattice. These lacunas, as prohibited regions for the growing SAW, act as repelling centers that confine the walk. Therefore, there is an enhancement of the weight of twisted walks among the statistically relevant configurations of SAWs, leading to a smaller $v_{\text {SAW }}$ (or greater $D_{\mathrm{SAW}}$ ) as compared with the square lattice.

From Tables XVI and XVII, our results indicate that, contrary to the previous findings in the literature such as $v_{K}$ and $v_{T}$, lacunarity plays an important role in the universality classes.

Another extension for fractals based on the Flory approach for Euclidean lattices ${ }^{(20)}$ is

$$
\begin{equation*}
\gamma=6 /\left(2+D_{f}\right) \tag{9}
\end{equation*}
$$

which also leads to results in disagreement with ours (see Table XVIII).
Our results indicate that the $\gamma_{\text {SAW }}$ behavior does not follow that of $v_{\text {SAW }}$ as suggested by Eqs. (1) and (9). For example, the central values of our estimates for lattices 2 and 4 suggest that they have near values of $\gamma_{\text {SAw }}$, while lattice 4 has $v_{\text {SAW }}$ greater than that of lattice 2 .

In summary, the series expansion method, based on an exact graph
counting technique for connected graphs on self-similar fractals, is a powerful method that provides results for critical parameters and exponents for the SAW problem on infinitely ramified fractals.

The results presented here were used to analyze the role of geometrical factors (e.g., average coordination number and lacunarity) on the critical parameters and exponents. The critical fugacity was obtained with good accuracy for carpets and varies linearly with the average coordination numbers of these fractal lattices. We also obtained that, contrary to previous estimates in the literature, for low lacunar fractals we may have $v_{\text {SAW }}($ fractal $)<v_{\text {SAW }}(d)$ for the SAW problem on a $d$-dimensional Euclidean lattice that embeds the fractal. This result is analogous to the random walk problem, although here $D_{\text {SAw }}<D_{f}$ due to the self-repelling condition.

Due to the relatively low-order series obtained so far, it was only possible to draw qualitative conclusions for the exponents. On the other hand, by increasing the order of the series, this method can also provide very accurate results for the critical exponents of the SAW problem on carpets.

Our method of graph counting also allows calculation of geometrical parameters of the fractal lattices in the $l \rightarrow \infty$ stage, such as lacunarity, which has been calculated so far in the literature only for the first stages of the carpets. Accurate measurements of this geometrical factor for the carpets and more accurate estimates of critical exponents using this method may lead to a quantitative description of universality classes of the SAW problem on these fractals. Work along these lines is in progress.

## APPENDIX

Consider a particular $n$-step SAW and the minimal stage $l_{0}$ that embeds it. The number of ways of embedding the SAW at stage $l>l_{0}$ is

$$
\begin{equation*}
G(l)=\left(b^{2}-m\right) G(l-1)+H(l-1) \tag{A.1}
\end{equation*}
$$

with $H(l-1)$ the number of configurations that cross the intersections of the $\left(b^{2}-m\right)$ reproductions of the $(l-1)$ stage in the $l$ stage.

Contributions to $H(l-1)$ come from configurations that cross just one intersection $\left[H_{1}(l-1)\right]$ or more than one intersection $\left[H_{2}(l-1)\right]$ of the ( $l-1$ )-stage reproductions.

Now, consider all possible types of partitionings $i$ of the SAW across one such intersection [this means, for instance, that the SAW crosses one boundary of one $(l-1)$-stage reproduction at the $i$ th step].

The contribution of partitioning $i$ to $H_{1}(l-1)$ is given by $H_{1}^{(i)}(l-1)$.

As the SAW necessarily crosses one border of the ( $l-1$ )-lattice stage and there are $b$ reproductions of the $(l-2)$-stage at each border of the $(l-1)$ stage (see Fig. 1), using the same reasonings that led to (A.1), we find

$$
\begin{equation*}
H_{1}^{(i)}(l-1)=b H_{1}^{(i)}(l-2)+A_{1}^{(i)} \tag{A.2}
\end{equation*}
$$

with constant $A_{1}^{(i)}$ representing the number of configurations that also cross the neighboring ( $l-2$ )-stage reproductions at this border of the ( $l-1$ ) stage. As the original SAW involves regions up to the $l_{0}$-stage spatial scale, the constant $A_{1}^{(i)}$ is obtained just considering neighboring $l_{0}$-stage reproductions.

Iterating (A.2) up to $l_{0}$, we find

$$
\begin{equation*}
H_{1}^{(i)}(l-1)=b^{l-1-l_{0}} H_{1}^{(i)}\left(l_{0}\right)+B_{1}^{(i)}=b^{l-1} C_{1}^{(i)}+D_{1}^{(i)} \tag{A.3}
\end{equation*}
$$

with constants $C_{1}^{(i)}$ and $D_{1}^{(i)}$ depending on the properties of the SAW at the $l_{0}$ stage of the lattice and on the scaling factor $b$.

Now, consider all possible types of partitionings of the SAW across two or more intersections of neighboring $(l-1)$-stage reproductions. For each partitioning $i, H_{2}^{(i)}(l-1)=1$.

All these possible partitionings involve spatial scales that are embedded in neighboring $l_{0}$-stage reproductions. This means that

$$
\begin{equation*}
H_{2}^{(i)}(l-1)=H_{2}^{(i)}\left(l_{0}\right)=1 \tag{A.4}
\end{equation*}
$$

Adding (A.3) and (A.4) for all possible partitionings and intersections gives

$$
\begin{equation*}
H(l-1)=H_{1}(l-1)+H_{2}(l-2)=C_{1} b^{l-1}+C_{2} \tag{A.5}
\end{equation*}
$$

with

$$
H_{1}(l-1)=\sum_{(i)} H_{1}^{(i)}(l-1) \quad \text { and } \quad H_{2}(l-1)=\sum_{(i)} H_{2}^{(i)}(l-1)
$$

## ACKNOWLEDGMENTS

We are grateful to S. L. A. de Queiroz for a critical reading of the manuscript. This work was supported by Brazilian agencies CNPq and SCT/PR.

## REFERENCES

1. P. J. Flory, in Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1971).
2. P. G. de Gennes, in Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).
3. D. C. Rapaport, J. Phys. A 18:L201 (1985).
4. A. J. Guttmann, J. Phys. A 20:1839 (1987).
5. B. Nienhuis, Phys. Rev. Lett. 49:1062 (1982); J. Stat. Phys. 34:731 (1984).
6. J. C. Le Guillou and J. Zinn-Justin, J. Phys. Lett. (Paris) 46:L137 (1985).
7. B. B. Mandelbrot, in The Fractal Geometry of Nature (Freeman, San Francisco, 1982).
8. R. Rammal, G. Toulouse, and J. Vannimenus, J. Phys. (Paris) 45:389 (1984).
9. S. B. Lee, H. Nakanishi, and Y. Kim, Phys. Rev. B 39:9561 (1989).
10. K. Kremer, Z. Phys. B 45:149 (1981).
11. R. Dekeyser, A. Maritan, and A. L. Stella, Phys. Rev. Lett. $58: 1758$ (1987).
12. A. Aharony and A. B. Harris, J. Stat. Phys. 54:1091 (1980).
13. K. Yao and G. Zhuang, J. Phys. A 23:L1259 (1990).
14. Fábio D. A. A. Reis and R. Riera, Phys. Rev. A 45:2628 (1992).
15. Y. Gefen, A. Aharony, and B. B. Mamdelbrot, J. Phys. A 17:1277 (1984).
16. Y. Taguchi, J. Phys. A 20:6611 (1987).
17. G. A. Baker, Jr., in Essentials of Padé Approximants (Academic Press, New York, 1975).
18. G. A. Baker, Jr., and G. Morris, in Encyclopedia of Mathematics and its Applications, Vol. 13 (Cambridge University Press, Cambridge, 1981).
19. Y. Taguchi, J. Phys. A 21:1929 (1988).
20. L. Pietronero and L. Peliti, Phys. Rev. Lett. 55:1479 (1985).

[^0]:    ${ }^{1}$ Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro, 22452 Rio de Janeiro RJ, Brazil.

[^1]:    ${ }^{a}$ Pole present between the origin and 1.15 times the displayed physical singularity.

[^2]:    ${ }^{a}$ Pole present near the biased critical value $x^{*}=1$.

[^3]:    ${ }^{a}$ This work.
    ${ }^{b}$ Ref. 10.
    ${ }^{c}$ Ref. 16.

