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Using a new graph counting technique suitable for self-similar fractals, exact 
18th-order series expansions for SAWs on some Sierpinski carpets are 
generated. From them, the critical fugacity xc and critical exponents VSA w and 
7SAW are obtained. The results show a linear dependence of the critical fugacity 
with the average number of bonds per site of the lattices studied. We find for 
some carpets with low lacunarity that VSAW <0-75, thus violating the relation 
VsAw(fractal)>vsgw(d) for SAWs on the fractals which are embedded in a 
d-dimensional Euclidean space. 
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1. I N T R O D U C T I O N  

The s tudy of  the cri t ical  behav io r  of  self-avoiding walks (SAWs)  on 
Eucl idean  latt ices has three ma in  theoret ica l  approaches .  O n  one hand,  
there  are phenomeno log ica l  theories  or  F lo ry - l ike  app rox ima t ions ,  where 
SAWs mode l  the exc luded-volume effect in po lymer  chains,  (~' 2) and  on the 
o ther  hand,  series expans ions  for the geometr ica l  p roper t ies  of the walk (3' 47 
and  f ie ld- theoret ical  approaches .  (s' 6) 

Dur ing  the last  decade,  much  effort has been made  in the s tudy of the 
cri t ical  behav io r  of SAWs  on fractals. Some exact  results were presented  for 
the case of finitely ramif ied fractals,  (v) such as K o c h  curves or  Sierpinski  

gaskets.  (s) 
There  also have been numer ica l  studies of SAWs on perco la t ion  

clusters, ~9) but  the ma in  theoret ica l  effort on SAWs on general  fractal  
lat t ices is based  on the F l o r y  approach .  
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The first attempt to generalize Flory theory to fractal lattices was 
made by Kremer (1~ for the exponent that scales the average end-to-end 
distance R with N, the number of steps of the walks (R ~ NVSAW): 

vk = 3/(2 + Dr) (1) 

with Df the fractal dimension of the lattice. (7) 
As Df does not completely characterize the fractal geometry, other 

proposals were made (8'11'12) which relate VSAW to other geometrical 
parameters of the lattice as well as to the problem of a random walk on the 
same lattice. Although the authors give phenomenological justifications for 
their expressions, the final validity of the proposals demands comparisons 
with more reliable theoretical estimates. 

For finitely ramified fractals the results from the above Flory 
generalizations improve the estimate (1), yet present an average deviation 
of 5 % from the available exact results, while for infinitely ramified fractals, 
those estimates of VSAW are uncertain due to their dependence on geometri- 
cal parameters that are not precisely known. Numerical simulations are 
constrained to finite lattices. (13) 

In this paper, we present results for the critical behavior of SAWs on 
a family of infinitely ramified fractals called Sierpinski carpets, based on the 
series expansion method. The series obtained are exact order by order in 
the expansion parameter for the infinite lattice. As in Euclidean lattices, 
this approach provides reliable estimates for critical parameters and 
exponents whose accuracy can be improved in a systematic way by 
increasing the order of the series. 

From our results, we test the validity of estimates previously obtained 
in the literature from approximate methods. 

In the next section we review a technique of graph counting on regular 
fractals (14) that provides the series expansion method for SAWs on these 
general lattices. Subsequently in Section 3 we present results from series up 
to 18th order for some Sierpinski carpets. Section 4 comprises a discussion 
and conclusion. 

2. G R A P H  C O U N T I N G  ON R E G U L A R  F R A C T A L S  

Here, we consider regular fractals formed by a deterministic rule of 
construction in which a primitive initiator is divided into subunits and 
reproduced iteratively within each subunit. Figure 1 illustrates the case of 
Sierpinski carpets where the initiator is a square divided into subsquares of 
length scale b times smaller. Among the b 2 subsquares formed, rn are non- 
reproducible (lacunas) for the next iterations. After l iterations, the lattice 
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Fig. 1. Sierpinski carpet at the lth stage of construction. Here b =6, m=4.  The dashed 
subsquares are lacunas. Each open subsquare is a reproduction of the full lattice after l -  1 
iterations of the rule of construction, which is given by the first iteration. 

is said to be at the Ith stage. The fractal lattice is obtained in the limit 
l ~ m. Figure 1 shows an/-stage Sierpinski carpet: it has as subunits copies 
of the lattice at the previous ( l - 1 ) t h  stage. These copies have the same 
spatial arrangement as the subunits of the initiator (first stage). The fractal 
thus constructed has fractal dimension Df= ln(b 2 -  m)/ln b. (7) 

SAWs are represented by graphs on the lattice formed by connected 
bonds without self-intersections and having two endpoints. Each different 
geometrical form defines a type of graph. Our aim is to count the number 
of embeddings of each type of SAW in the lattice at each stage. We 
consider the bonds at the borders as well as free boundary conditions. 

In what follows we will describe the method for the Sierpinski carpets 
with lacunas symmetrically distributed with respect to the center of the 
initial square and not at the border. However, the method can be easily 
extended to other carpets or any other regular fractal. 

The number G(l) of embeddings of a certain type of SAW in the lattice 
at stage I is given by (14) 

G(I) = (b 2 - m )  G(I- 1) + H(I-  1) (2a) 

with 

H([-- 1) = H ~ ( I -  1)+ H2(l-- 1)= C l b l - l - q  - C 2 (2b) 

In (2a), the first term represents the number of SAWs that can be 
embedded in each one of the (b 2 -  m) copies of the ( l -  1)th stage at lattice 
stage l (see Fig. 1). The terms Hi(I-1) and H2(I-1) represent the total 
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number of configurations that cross two or more such copies, respectively. 
In (2b), constants C1 and C2 depend only on properties of the graph at the 
minimal stage l0 that embeds it. A detailed derivation of Eq. (2b) is shown 
in the Appendix. 

Iterating (2) up to the stage lo gives 

G(l) = A(b 2 - m) '  + Bb t + C (3) 

with constants A, B, and C depending on the constants in (2). 
Equation (3) is valid for all types of connected graphs (14) and, in 

particular, for the number of sites S (graphs with zero bonds): 

S ( l )  -~- m 1(6 2 - -  FFl) l ~- B 1 b l ~  t- C 1 (4 )  

From (3) and (4) we obtain the density of each type of SAW in the fractal 
lattice: 

PsAw = lira G(I) =--A (5) 
t~o~ S(I) A 1 

With this method it is also possible to obtain several geometrical 
parameters of the fractal lattice. For instance, from the number of graphs 
with one bond at each stage G~(1) and the number of sites S(l) we are able 
to calculate the average coordination number of the fractal lattices, which 
is twice the average number of bonds per site: 

q=  lira GI(/) 
, ~  S(l) (6) 

An important geometrical parameter for characterizing the critical 
behavior on fractals is lacunarity, (7) which represents the degree of 
homogeneity of the fractals. (15) The expressions proposed in the literature 
to measure lacunarity for carpets (~5' 16) have so far been calculated only for 
the first states of the lattices. Our method allows the calculation of these 
expressions in the l ~ ~ stage. 

3. RESULTS FOR SIERPINSKI CARPETS 

Consider the series expansions for the two generating functions 

C(x)= ~ C , x "  

R(x)= ~ (R~ . )x  "-~ 
n = l  

(7a) 

(7b) 
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where x is the step fugacity, C, is the number of n-step SAWs per site, and 
~R])  is the mean-square end-to-end distance of n-step SAWs per site. 

The generating functions (7) have, respectively, the critical behavior ~2) 
C(x) ~ (x c -  x)  ~SAW (8a) 

R(x)  ~ (1 --x)-(2vsAw + ~) (8b) 

The coefficients C~ in (7a) may be obtained from (5), and {R 2) in 
(Tb) from (5) and the end-to-end distance for each type of SAW. 

The procedure used to obtain Cn (and R]) for each particular fractal 
lattice is as follows: 

(i) generation by computer of all types (different geometrical forms) of 
n-step SAWs on a square lattice. For each type, 

(ii) consider the minimal stage lo of the fractal lattice that embeds it and 
compute exactly the total number of possible embeddings of the 
SAW at this stage [this gives G(/o); see text] 

(iii) consider two neighboring /o-stage reproductions and compute the 
total number of possible embeddings that cross the intersection 
between then I-this gives the contribution to H~(/0); see text] 

(iv) consider more than two neighboring/0-stage reproductions (for the 
Sierpinski carpets we have just to consider three or four reproduc- 
tions) and compute the total number of possible embeddings that 
cross two or more intersections between them (this gives the 
contribution to H2(/o); see text] 

(v) from (iii) and (iv), according (A.3)-(A.5), obtain H ( l -  1) in Eq. (2) 

(vi) iterating (2) up to stage l0 and using (ii), obtain constants A, B, C 
in Eq. (3) 

(vii) finally, Cn is obtained from (5) by adding the contributions of all 
types of n-step SAWs. 

To prevent errors, we have checked the results for SAWs up to 11 
steps, rederiving constants A, B, and C in Eq. (3) from the interaction of 
Eq. (2) up to the ( lo+ l )  stage and computing directly (ii)-(v) for this 
stage. 

Another check for small SAWs was done by computing directly the 
number of embeddings at three consecutives stages of construction of the 
fractal lattice. From these results and assuming Eq. (3), the constants A, B, 
and C were also confirmed. 

We have performed the exact calculations of the coefficients Cn and 
(R  2) for some Sierpinski carpets. Figure 2 shows the first stage of these 
lattices. They have respectively parameters b = 5, m = 1 (lattice 1); b = 7, 
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Ini t ia tors  of Sierpinski carpets:  (a) b = 5 ,  m =  1; (b, c) b=7, m = 9 ;  (d) b = 3 ,  m =  1; 
(e) b = 5 ,  m = 9 .  
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m = 9 (lattices 2 and 3); b = 3, m = 1 (lattice 4); and b = 5, m = 9 (lattice 5). 
Lattices 2 and 3 have the same fractal dimension, but lattice 2 has a lower 
lacunarity, or a more uniform spatial distribution of lacunas. (15) 

Tables I-V show the coefficients C, and p, = C , ( R ] )  for lattices 1-5, 
respectively. 

The resulting 18th-order series (7) were analyzed by usual D log Pad6 
approximants (17) in order to fit (8). 

In Tables VI-X we show the poles and residues of Pad6 approximants 
to the logarithmic derivative of the SAW series (7a) (w) that provides 
estimates for the critical fugacity xc and exponent 7sAw in (8a), for lattices 
1-5, respectively. Analogously, in Tables XI-XV, we show the value of 
D log Pad6 approximants of the SAW series (7b) that provides estimates 
for (27saw + 1) in (Sb) at the biased critical value x * =  1. 

Final estimates of xc, 7SAW and YSAW are obtained by considering the 
last M = 9 estimates of the [Ni/Di] approximants shown in Tables VI-XV 
and using the standard procedure for the error assessment. (~8) 

Table XVI shows the results for critical parameters xc, critical 
exponents VsAw and 7sAw, together with D I and the average number of 
bonds per site q (6) for each lattice. For comparison, we include the results 
for the square lattice from an 18th-order series expansion of (7) and the 
same criteria for the estimates. 

Table I. Coefficients C(x) and R(x) for SAWs on the Sierpinski Carpet 
wi th  b = 5 ,  m = l  (see Fig, 2a) 

n C. p.  

1 115/29 115/29 
2 342/29 912/29 
3 48893/1392 222461/1392 
4 22461/232 473666/696 
5 63337/232 1813039/696 
6 1035941/1392 6496555/696 
7 68748293/33408 1066015037/33408 
8 10326863/1856 88042953/8352 
9 253783977/16704 5664272501/16704 

10 113829953/2784 2973959761/2784 
11 616617891/5568 55253416097/16704 
12 9 9 2 1 2 8 3 5 3 7 / 3 3 4 0 8  21086901275/2088 
13 13362209531/16704 508886033383/16704 
14 71463382173/33408 506516040677/5568 
15 191739773753/33408 8994485533345/33408 
16 511561441985/33408 3301964087761/4176 
17 1368443702359/33408 8561214321183/3712 
18 1214746654897/11136 111697968493535/16704 
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Coeff icients C(x) and R(x) for SAWs on the Sierpinski Carpet wi th  
b = 7 ,  m = 9  (see Fig. 2b) 

n C,, Pn 

1 182/47 182/47 
2 528/47 1408/47 
3 30807/940 139607/940 
4 41501/470 58046/94 
5 22913/94 1084481/470 
6 610407/940 3792521/470 
7 165117/94 12647509/470 
8 436017/94 40739336/470 
9 465341363/37600 10215742339/37600 

10 305460951/9400 1958733547/2350 
11 3 2 2 9 5 7 7 7 4 3 / 3 7 6 0 0  18891719643/7520 
12 2110315247/9400 35078924529/4700 
13 5542013239/9400 205936218759/9400 
14 1 4 4 3 5 2 3 9 2 3 1 / 9 4 0 0  119685077599/1880 
15 1 5 0 9 6 1 2 8 9 1 9 7 / 3 7 6 0 0  1723931566617/9400 
16 7 8 4 3 9 1 1 0 8 1 3 / 7 5 2 0  4929142078277/9400 
17 1022039468727/37600 56000535076967/37600 
18 2649923058101/37600 79060765759227/18800 

Table III. Coeff icients C(x) and R(x) for SAWs on the Sierpinski Carpet 
wi th  b---7, m = 9  (see Fig. 2c) 

n C,, p,, 

1 117/31 117/31 
2 330/31 880/31 
3 1871/62 8463/62 
4 97519/1240 681024/1240 
5 520643/2480 4918187/2480 
6 668567/1240 8305914/1240 
7 3487859/2480 53491859/2480 
8 8865873/2480 83250162/1240 
9 11394207/1240 252358531/1240 

10 57604051/2480 749189531/1240 
11 146674303/2480 4371527287/2480 
12 184636936/1240 3143951199/620 
13 467332593/1240 17878761053/1240 
14 2346766139/2480 10064654037/248 
15 2958269782/1240 140437005034/1240 
16 2 9 6 5 5 9 2 0 5 2 9 3 / 4 9 6 0 0  972229508503/3100 
17 3 7 2 7 9 8 7 8 8 7 9 7 / 2 4 8 0 0  4278413058889/4960 
18 18660653341777/49600 14617377705617/6200 
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Table IV. Coeff icients C(x) and R(x) for SAWs on the Sierpinski Carpet 
wi th  b = 3 ,  m = l  (see Fig. 2d) 

n C,, p,, 

1 42/11 42/11 
2 120/11 320/11 
3 1379/44 6243/44 
4 1825/22 6375/11 
5 79169/352 748137/352 
6 51695/88 320855/44 
7 548621/352 8401085/352 
8 1419981/352 6644089/88 
9 1857937/176 40923089/176 

10 9567527/352 123423015/176 
11 198498261/2816 5853951733/2816 
12 31817111/176 1069407931/176 
13 328062195/704 12354078169/704 
14 1677615671/1408 35316758085/704 
15 4305919093/1408 200127960733/1408 
16 1 0 9 8 3 3 6 4 1 7 7 / 1 4 0 8  281328468717/704 
17 3512719205/176 49098876469/44 
18 7 1 5 4 9 4 0 2 0 1 3 / 1 4 0 8  1090218120733/352 

Table V. Coeff icients C(x) and R(x) for SAWs on the Sierpinski Carpet 
wi th  b=5, m = 9  (see Fig. 2e) 

n C,, p,, 

1 210/61 210/61 
2 528/61 I408/61 
3 5341/244 23877/244 
4 12187/244 42537/122 
5 57311/488 543671/488 
6 64249/244 406639/122 
7 589579/976 9274523/976 
8 5341807/3904 51032471/1952 
9 118677773/3904 274374053/3904 

10 26372337/3904 180144509/976 
11 59257245/3904 1860446153/3904 
12 131654839/3904 2361402615/1952 
13 294339305/3904 11832763917/3904 
14 653479731/3904 7330081535/976 
15 1455378635/3904 71903470743/3904 
16 201662325/244 87536531663/1952 
17 1 4 3 2 6 5 4 5 6 2 7 / 7 8 0 8  845589313155/7808 
18 1 5 8 4 4 4 1 4 0 2 7 / 3 9 0 4  507819935985/1952 



Table VI. D log Pad6 Approximants to the Generating Function C(x) 
of Lattice 1 (see Fig. 2a) 

I-N- I/N] [N/N] IN + I/N] 
N Pole (residue) Pole (residue) Pole (residue) 

1 0.504462(-2.00045) 0.286531(-0.64538) 0.590297(-5.64301) 
2 0.391173(-1.39713) 0.390144(-1,38656) 0.374306(-1.17795) 
3 0.391249(-1.39762) ~ 0.376032(-1.20466) 0.372172(-1.15872) ~ 
4 0.378672(-1.25116) 0.384316(-1.39678) 0.376975(-1.21071) 
5 0.379938(-1.27478) 0.380444(-1.28710) 0.381133(-1.30742) 
6 0.375648(-1.33206) ~ 0.381453(-1.31914) 0.383166(-1.45043) a 
7 0.381737(-1.33179) 0.381845(-1.33749) 0.381903(-1.34097) 
8 0.381985(--1.34676) a 0.381771(-1.33386) a 0.382164(--1.36035) 

Pole present between the origin and 1.15 times the displayed physical singularity. 

Table VII. D log Pad6 Approximants to the Generating Function C(x) 
of Lattice 2 (see Fig. 2b) 

I N -  1/N] [N/N] IN + 1/N] 
N Pole (residue) Pole (residue) Pole (residue) 

1 0.518173(-2.00654) 0.288759(-0,62312) 0.614410 
2 0.398766(-1.38756) 0.398889(-1.38879) 0.383311 
3 0.398767(-1.38757) 0.385206(-1.21617) 0.381044 
4 0.388028(-1.26442) 0.401714(-1.71960) 0.385832 
5 0.390119(-1.30262) 0.391563(-1.33881) 0.393676 
6 b 0.394599(--1.44944) 0.394236 
7 0.394018(--1.42115) 0.395145(--1.47468) a 0.393289 
8 0,392080(--1.33469) 0.392933(--1.37415) 0.392594 
9 0,392788(--1.36709) 

-6.00257) 
-1.18738) 
-1.16696) ~ 
-1.21469) 
-1.40894) 
-1.43194) 
-1.39050) 
-1.35627) 

a Pole present between the origin and 1.15 times the displayed physical singularity. 
b No poles found. 

Table VIII. D log Pad6 Approximants to the Generating Function C(x) 
of Lattice 3 (see Fig. 2c) 

[ N -  1/N] [N/N] [N + 1/N] 
N Pole (residue) Pole (residue) Pole (residue) 

1 0.535667(-2.02171) 0.296500(-0.61941) 0.660244(-6.83940) 
2 0.413119(-1,40583) 0.416343(-1.43752) 0.400173(-1.23052) 
3 0.413679(-1,40971) 0.402487(-1.26552) 0.393781(-1.20102) a 
4 0.405003(-1,30759) 0.419131(-1.80562) 0.398954(-1.21193) ~ 
5 0.406465(-1.33310) 0.407015(-1.34569) 0,407537(-1.36002) 
6 0.412019(-1.70007) a 0.407386(-1.35545) 0,407707(-1.36440) a 
7 0.407081(-1.34618) a 0.410745(-1.41028) a 0.405730(-1.30702) 
8 0.403917(-1.22779) 0.407317(-1.35853) 0.406235(-1.32419) 
9 0.405609(-1.29961) 

a Pole present between the origin and 1.15 times the displayed physical singularity, 
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Table IX. D log Pad~ Approximants to the Generating Function C(x) 
of Lattice 4 (see Fig. 2d) 

[N- 1/N] [N/N] I N +  1/N] 
N Pole (residue) Pole (residue) Pole (residue) 

1 0.527397(-2.01370) 0.292779(-0.62058) 0.637951(-6.42010) 
2 0.406267(-1.39630) 0.408105(-1.41454) 0.392510(-1.21376) 
3 0.406470(-1.39769) 0.394365(-1.24186) 0.388608(-1.18876) ~ 
4 0.396640(--1.28095) 0 0.391488(_1.19940)a 
5 0.398105(-1.30734) 0.398751(-1.32269) 0.399576(-1.34676) 
6 0.392625(-1.40197) ~ 0.399893(-1.35814) 0.399912(-1.35894) 
7 0.399911(-1.35889) 0.399894(-1.35821) 0.399727(-1.35117) 
8 0.399466(-1.33782) 0.399308(-1.32835) 0.399825(-1.35503) a 
9 0.399478(-1.33846) ~ 

a Pole present between the origin and 1.15 times the displayed physical singularity. 
b No poles found. 

Table X. D log Pad~ Approximants to the Generating Function C(x) 
of Lattice 5 (see Fig. 2e) 

[N- 1/N] IN/N] IN + 1/N] 
N Pole (residue) Pole (residue) Pole (residue) 

1 0.630538(-2.17070) 0.319784(-0.55833) 0.928221(-13.65449) 
2 0.475372(-1.47483) 0.487754(-1.58583) 0.459160(-1.25302) 
3 0.479259(-1.50061) 0.459042(-1.25143) 0.459152(-1.25293) 
4 0.460628(-1.27684) b 0.459343(_1.25512)a 
5 0.460832(-1.28014) 0.459686(-1.26025) 0.459429(-1.25619) 
6 0.450556(-1.03942) 0.451659(-1.07286) 0.454908(-1.16728) 
7 0.450273(-1.03146) ~ 0.455877(-1.19422) 0.449109(-1.09320) a 
8 0.457312(-1.23746) 0.461909(-1.43436) b 
9 0.456576(--1.21657) ~ 

Pole present between the origin and 1.15 times the displayed physical singularity. 
b No poles found. 

Table Xl. D log Pad~ Approximants to the Generating Function R(x) 
of Lattice 1 (see Fig. 2a) 

IN -  1/N] [N/N] I N +  1/N] 
N Residue Residue Residue 

1 2.12619 2.47036 2.57971 
2 2.59061 2.51782 2.42387 
3 2.44127 2.42389 2.42387 
4 2.43830 2.45767 2.45918 
5 2.45923 2.45735 2.47263 
6 2.47718 2.47577 2.68625 a 
7 2.47674 2.47765 2.47813 
8 2.47865 2.47748 

Pole present near the biased critical value x* = 1. 
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Table XlI. 
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D log Pad~ Approximants to the Generating Function R(x) 
of Lattice 2 (see Fig. 2b) 

[N- 1/N] [N/N] I N +  l/N] 
N Residue Residue Residue 

1 2.10319 2.45848 2.56858 
2 2.57979 2.50550 2.39929 
3 2.42080 2.38372 2.39750 
4 2.41204 2.42560 2.42138 
5 2.42196 2.42363 2.41625 
6 2.42020 2.41834 2.41675 
7 2.42091 2.42587 2.38206 
8 2.41717 2.45791 

Table XlII. D log Pad6 Approximants to the Generating Function R(x) 
of Lattice 3 (see Fig. 2c) 

[N- 1/N] [N/N] [N + 1/N] 
N Residue Residue Residue 

1 2.09277 2.45474 2.57123 
2 2.58381 2.50813 2.44024 
3 2.45054 2.45518 2.43611 
4 2.45021 2.49095 2.51890 
5 2.52489 2.41479 2.60269 
6 2.62315 2.68500 2.71130 a 
7 2.71441 a 2.68720 2.59847 
8 2.62474 2.05370 a 

a Pole present near the biased critical value x* = 1. 

Table XIV. D log Pad6 Approximants to the Generating Function R(x) 
of Lattice 4 (see Fig. 2d) 

IN-  1/N] [N/N] [ N +  1/N] 
N Residue Residue Residue 

1 2.09764 2.45604 2.56705 
2 2.57847 2.50448 2.42153 
3 2.43562 2.43062 2.42021 
4 2.43529 2.46281 2.47382 
5 2.47564 2.45286 2.55281 
6 2.61425 a 2.62386 a 2.58440 
7 2.61519 a 2.68300 a 2.54631 
8 2.59912 ~ 2.51948 

a Pole present near the biased critical value x* = 1. 
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Table XV. D log Pad& Approximants to the Generating Function R(x) 
of Lattice 5 (see Fig. 2e) 

465 

[ N -  1/N] [N/N] IN + 1/N] 
N Residue Residue Residue 

1 2.02976 2.44424 2.67166 
2 2.72107 2.60400 2.59416 
3 2.59473 2.60825 2.58140 
4 2.58339 2.59370 2.59286 
5 2.59288 2.59376 2.60169 
6 2.60266 2.58640 0.26210 a 
7 2.35605 1.2249& 0.19732 a 
8 2.27807 2.40228 

Pole present near the biased critical value x* = 1. 

Table XVI. Critical Parameters and Exponents for SAWs on Sierpinski Carpets 
Obtained from the 18th-Order Series Expansion, together with Results 

for the Square Lattice 

Lattice Df (q)  xc 7 v 

1 1.975 1.983 0.3818 _ 0.0003 1.338 • 0.030 0.739 • 0.007 
2 1.896 1.936 0.3933 _+ 0.0010 1.36 _+ 0.07 0.71 • 0.10 
3 1.896 1.887 0.4058 _+ 0.0018 1.30 • 0.19 0.82 _+ 0.09 
4 1.893 1.909 0.3997 _+ 0.0005 1.35 _+ 0.05 0.80 • 0.06 
5 1.723 1.721 0.458 -t- 0.005 1.26 • 0.37 0.7 __+ 0.5 

Square ~ 2 2 0.3789 _+ 0.0003 1.331 • 0.013 0.744 • 0.008 

" Exact values: 7 r = 1.34375, v 12) =0.75 (ref. 5). Best estimate: x~Z)= 0.379052(0) (ref. 4). 

4. D a S C U S S I O N  A N D  C O N C L U S I O N S  

F r o m  T a b l e  XVI,  it  is n o t  poss ib le  to o rde r  e x p o n e n t s  7 a n d  v aga ins t  

D s, b u t  the cr i t ical  fugaci ty  xc d ep en d s  m o n o t o n i c a l l y  o n  q, as expected  

(see Fig. 3). In  fact, f rom Fig. 3, the  d e p e n d e n c e  of Xc o n  q is 
a p p r o x i m a t e l y  l i nea r  for this r ange  of  D F. 

T a b l e  XV!  also shows tha t  lat t ices 1 a n d  2 have  cen t ra l  va lues  
e s t ima te  VsAw < v ~2) (exact  resul t  for the squa re  latt ice).  F o r  lat t ice 2, it is 

also the  t r e n d  s h o w n  by  the last  a p p r o x i m a n t s  in  T a b l e  XII .  These  resul ts  
do  n o t  s u p p o r t  p rev ious  f ind ings  in  the l i t e ra tu re  such  as vk [Eq .  (1 ) ]  o r  
the ones  o b t a i n e d  f rom a b o n d - m o v i n g  scheme y r .  (19) Bo th  a p p r o a c h e s  

es t imate  VsAw > v (2) for all famil ies  of  carpets  (see T a b l e  XVII) .  
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Fig. 3. Critical fugacity versus average number of bonds per site of Sierpinski carpets 
obtained from the 18th-order series expansion. The result for the square lattice is also 
included. 

Now consider the VsAw estimates from Table XVI for lattices 3 and 4. 
While the final results include v ~2), Tables XIII and XIV of the last 
approximants suggest that for these lattices the (2VsAw+ 1) estimates 
converge to values greater than (2v ~2) + 1). 

Table X for the VsAw estimates of lattice 5 have anomalous highest 

Table XVII .  End-to-End Distance Exponent VSA w for SAWs on 
Sierpinski Carpets 

Lattice VsAw a Vk b VT c 

1 0.739 _ 0.007 0.755 0,796 
2 0.71 _+0.10 0.770 0.812 

3 0.82 _ 0.09 0.770 0,814 

4 0.80 _ 0.06 0.771 0,829 
5 0.7 + 0.5 0.806 0.869 

This work. 
b Ref. 10. 
c Ref. 16. 
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Table XVIII. Exponent YsAw for SAWs on Sierpinski Carpets 
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Lattice 7SAW ~ Yk b 

1 1.338 __+ 0.030 1.510 
2 1.36 __+ 0.07 1.540 
3 1.30 __ 0.19 1.540 
4 1.35 + 0.05 1.542 
5 1.26 __+ 0.37 1.612 

This work. 
b Ref. 17. 

order approximants indicating a possible change in the end-to-end distance 
behavior. As consequence, the final results for the exponents of this lattice 
have poor accuracy and it is not possible to draw any conclusion from 
them. 

The results for the end-to-end distance exponent of lattices 3 and 4 can 
be understood if we consider their initiators (Figs. 2c and 2d, respectively). 
As we iterate them, the fractal lattices thus obtained leave narrow corridors 
to embed the SAWs. They show a tendency to stretch in order to survive, 
leading to  YSAW>Y (2) (or DSAW = 1 / V s A w <  1/v (2)) for carpets with high 
lacunarity. 

The new behavior VSA w < V (2) for lattices 1 and 2 can also be under- 
stood if we consider their initiators (Figs. 2a and 2b), which have lacunas 
spread over the square lattice. These lacunas, as prohibited regions for the 
growing SAW, act as repelling centers that confine the walk. Therefore, 
there is an enhancement of the weight of twisted walks among the 
statistically relevant configurations of SAWs, leading to a smaller VSAW (or 
greater DsAw) as compared with the square lattice. 

From Tables XVI and XVII, our results indicate that, contrary to 
the previous findings in the literature such as vK and vv, lacunarity plays 
an important role in the universality classes. 

Another extension for fractals based on the Flory approach for 
Euclidean lattices (2~ is 

= 6/(2 + Df) (9) 

which also leads to results in disagreement with ours (see Table XVIII). 
Our results indicate that the 7SAW behavior does not follow that of 

VSAW as suggested by Eqs. (1) and (9). For example, the central values of 
our estimates for lattices 2 and 4 suggest that they have near values of 
~SAW, while lattice 4 has VSA w greater than that of lattice 2. 

In summary, the series expansion method, based on an exact graph 



468 Aar~o Reis and Riera 

counting technique for connected graphs on self-similar fractals, is a power- 
ful method that provides results for critical parameters and exponents for 
the SAW problem on infinitely ramified fractals. 

The results presented here were used to analyze the role of geometrical 
factors (e.g., average coordination number and lacunarity) on the critical 
parameters and exponents. The critical fugacity was obtained with good 
accuracy for carpets and varies linearly with the average coordination 
numbers of these fractal lattices. We also obtained that, contrary to 
previous estimates in the literature, for low lacunar fractals we may have 
VsAw(fractal)<vsAw(d) for the SAW problem on a d-dimensional 
Euclidean lattice that embeds the fractal. This result is analogous to the 
random walk problem, although here DsAw < D i  due to the self-repelling 
condition. 

Due to the relatively low-order series obtained so far, it was only 
possible to draw qualitative conclusions for the exponents. On the other 
hand, by increasing the order of the series, this method can also provide 
very accurate results for the critical exponents of the SAW problem on 
carpets. 

Our method of graph counting also allows calculation of geometrical 
parameters of the fractal lattices in the l ~ oo stage, such as lacunarity, 
which has been calculated so far in the literature only for the first stages of 
the carpets. Accurate measurements of this geometrical factor for the 
carpets and more accurate estimates of critical exponents using this method 
may lead to a quantitative description of universality classes of the SAW 
problem on these fractals. Work along these lines is in progress. 

A P P E N D I X  

Consider a particular n-step SAW and the minimal stage l 0 that 
embeds it. The number of ways of embedding the SAW at stage l>  lo is 

G(l)= (b z - m )  G(I- 1 ) + H ( l -  1) (A.I) 

with H(l-  1) the number of configurations that cross the intersections of 
the (b2-m) reproductions of the ( l - 1 )  stage in the l stage. 

Contributions to H(l -  1) come from configurations that cross just one 
intersection [Hi( l -  1)] or more than one intersection [H2(l- 1)] of the 
( l-  1)-stage reproductions. 

Now, consider all possible types of partitionings i of the SAW across 
one such intersection [this means, for instance, that the SAW crosses one 
boundary of one (l-1)-stage reproduction at the ith step]. 

The contribution of partitioning i to Hi(l-1)  is given by H]~)(l - 1). 
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As the SAW necessarily crosses one border of the ( l -  1)-lattice stage and 
there are b reproductions of the ( l -2 ) - s tage  at each border of the ( l -  1)- 
stage (see Fig. 1), using the same reasonings that led to (A.1), we find 

H ~*)(l- 1 ) = bH ~)(l-- 2) + A ~i) (a.2) 

with constant A ]i) representing the number of configurations that also cross 
the neighboring ( / -2 ) - s tage  reproductions at this border of the ( l - l )  
stage. As the original SAW involves regions up to the /0-stage spatial 
scale, the constant A ~i) is obtained just considering neighboring /o-stage 
reproductions. 

Iterating (A.2) up to lo, we find 

H ~ i ) ( l - 1 ) = b  '-* '~ (A.3) 

with constants C ]~) and D] i) depending on the properties of the SAW at the 
lo stage of the lattice and on the scaling factor b. 

Now, consider all possible types of partitionings of the SAW across 
two or more intersections of neighboring ( l -1 ) - s tage  reproductions. For 
each partitioning i, H~}(l  - l ) =  1. 

All these possible partitionings involve spatial scales that are 
embedded in neighboring/o-stage reproductions. This means that 

H(2i)(l - 1) = H(2~ 1 (A.4) 

Adding (A.3) and (A.4) for all possible partitionings and intersections 
gives 

H ( l -  1 ) = H z ( l -  1 ) + H 2 ( l -  2) = C1 b t-a + C2 (A.5) 

with 

H I ( I - - 1 ) =  Z H~O(I--1 ) and H 2 ( I - 1 ) =  Z H(2~ ) 
(i) (i) 
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